X線による矮新星GK Perseiの 増光期と静穏期の観測

和田 有希

(東京大学大学院 理学系研究科/理化学研究所 仁科加速器研究センター)

湯浅 孝行, 中澤 知洋¹, 牧島 一夫², 林 多佳由^{3, 4}, 石田 学⁵ 1: 東大理 2: 理化学研究所 3: GSFC/NASA 4:名大理, 5: ISAS/JAXA

Wada et al. submitted

激変星について

- 白色矮星 (WD) と恒星 (低質量) との連星系
- 恒星から白色矮星に向けて降着する
- 激変星はIa型超新星の親星候補 (SD説)
 - -> 激変星のWD質量分布が重要

磁場の強さ

古典新星・回帰新星 (ガスの核融合)

矮新星 (円盤の不定性による降着量の変化)

そのほかの弱磁場連星系

Intermediate Polar

降着円盤と 降着柱を形成 Polar

降着柱を形成

X線観測による白色矮星質量の推定

Intermediate Polar (IP)

- 主系列星と白色矮星 (WD) の連星系 (激変星の一種)
- WDは強磁場を持つ (B~105-6 G).
- 降着ガスは円盤と降着柱を形成

降着柱の物理

- 降着ガスは衝撃波により加熱
- 衝撃波温度 $T_s = 重力ポテンシャル$

 $T_{\rm s} \propto M_{\rm WD}/R_{\rm WD}$ & $M_{\rm WD}-R_{\rm WD}$ 関係 (Aizu 1973) (Nauenberg 1972) => WD質量の推定

(e.g. Ishida 1990, Fujimoto+1997, Suleimanov+2005, Yuasa+2010)

X線による質量推定手法の利点

- X線スペクトルの解析から直接に質量を推定できる
- 軌道傾斜角がわかっていない系でも精度がよい

X線観測による白色矮星質量の推定

Intermediate Polar (IP)

- 主系列星と白色矮星 (WD) の連星系 (激変星の一種)
- WDは強磁場を持つ (B~105-6 G).
- 降着ガスは円盤と降着柱を形成

降着柱の物理

- 降着ガスは衝撃波により加熱
- 衝撃波温度 $T_s = 重力ポテンシャル$

 $T_{\rm s} \propto M_{\rm WD}/R_{\rm WD}$ & $M_{\rm WD}$ - $R_{\rm WD}$ 関係 (Aizu 1973) (Nauenberg 1972)

=> WD質量の推定

(e.g. Ishida 1990, Fujimoto+1997, Suleimanov+2005, Yuasa+2010)

X線による質量推定手法の利点

- X線スペクトルの解析から直接に質量を推定できる
- 軌道傾斜角がわかっていない系でも精度がよい

- 単温度のプラズマ放射モデルを温度で積分
- 熱的制動放射による連続成分と電離した元素からの輝線成分

本研究の目的

質量推定手法の課題

- WD 降着円盤
- ガスは無限遠からの自由落下を仮定
- 円盤の内縁半径 (R_{in}) が小さい場合は重力ポテンシャルを過小評価 (Ezuka & Ishida 1999, Suleimanov+2005)

質量推定手法をR_{in}を取り込んで改良する

R_{in} を決定する物理

- 磁気圧と降着円盤のガス圧で決まる (Ghosh & Lamb 1979)
- 質量降着率の変化が大きい系では $R_{
 m in}$ も大きく変化 ($R_{
 m in} \propto \dot{M}^{-2/7} \, B^{4/7}$) ex) 120倍の質量降着率増加でRinは0.25倍

観測天体: GK Persei

- 2-3年おきに矮新星outburstを起こす
 - -> 降着円盤の不安定性により質量降着率が増大
- GK PerseiはIPの中で矮新星outburstを起こす特異な例
- R_{in} が小さいため、可視光とX線での M_{WD} が矛盾
- outburstとquiescenceの R_{in} の比から M_{WD} を推定する手法を開発・適用

GK Perseiの性質

- 1901年に古典新星爆発 -> 新星残骸がX線で観測
- 1901年に古典新星爆発 -> 新星残骸がX線で観測 1960年代から矮新星爆発が観測される (2~3年に1度) 🗟 🖁
- 1985年にX線で自転に伴うパルスを発見
 - -> 白色矮星が強磁場をもつことが判明

NuSTARによる2つの観測

NuSTAR による観測 (3-79 keV: T_s の決定精度に優れる)

	観測開始日	観測時間	種別
outburst	2015-04-04	42 ksec	ToO (Zemko+2016)
quiescence	2015-09-09	72 ksec	PI: 湯浅

解析結果:エネルギースペクトルの比較

解析結果:エネルギースペクトルの比較

解析結果:モデルフィット

モデル:降着ガスからの熱的放射,光電吸収,WD表面での反射,蛍光鉄輝線

複雑な吸収のためoutburstで低エネルギー側の残差が大きい

解析結果:モデルフィット

モデル:降着ガスからの熱的放射,光電吸収,WD表面での反射,蛍光鉄輝線

outburstは15-50 keVの帯域を使用 -> フィットが改善

解析結果:モデルフィット

モデル:降着ガスからの熱的放射,光電吸収,WD表面での反射,蛍光鉄輝線

 T_s の低下 + F_x の増加 -> outburstで R_i が縮小した

質量推定手法の改良

円盤内縁からWD表面までの重力解放へ修正

質量推定手法の改良

円盤内縁からWD表面までの重力解放へ修正

$$F_{
m x} \propto M_{
m WD} \, \dot{M} \, (1-R_{
m WD}/R_{
m in})$$
 $T_{
m s} \propto M_{
m WD} \, (1-R_{
m WD}/R_{
m in})$

Alfven半径の関係式 (Ghosh & Lamb 1979) より

$$\frac{R_q}{R_b} = \left(\frac{\dot{M}_q}{\dot{M}_b}\right)^{-2/7} = \left(\frac{F_q \cdot T_q^{-1}}{F_b \cdot T_b^{-1}}\right)^{-2/7}$$

- 本観測では $R_a/R_b = 3.9 \pm 0.5$
- *T*_sが得られたときの*R*_{in}と*M*_{WD} の関係をプロット
- $R_q/R_b = 3.9$ を満たす M_{WD} を探す

質量推定手法の改良

円盤内縁からWD表面までの重力解放へ修正

$$F_{
m x} \propto M_{
m WD} \, \dot{M} \, (1-R_{
m WD}/R_{
m in})$$
 $T_{
m s} \propto M_{
m WD} \, (1-R_{
m WD}/R_{
m in})$

Alfven半径の関係式 (Ghosh & Lamb 1979) より

$$\frac{R_q}{R_b} = \left(\frac{\dot{M}_q}{\dot{M}_b}\right)^{-2/7} = \left(\frac{F_q \cdot T_q^{-1}}{F_b \cdot T_b^{-1}}\right)^{-2/7}$$

- 本観測では $R_a/R_b = 3.9 \pm 0.5$
- *T*_sが得られたときの*R*_{in}と*M*_{WD} の関係をプロット
- $R_q/R_b = 3.9$ を満たす M_{WD} を探す

WDの推定質量:

$$M_{\rm WD} = 0.87 \pm 0.05 \ M_{\rm sun}$$

降着円盤の内縁半径 R_{in}:

$$R_{\rm b} \sim 1.9 \ R_{\rm WD}$$

 $R_{\rm g} \sim 7.4 \ R_{\rm WD}$

考察

2つの観測で衝撃波温度が異なり、内縁半径が変化した

理論式 $R_{\rm in} \propto \dot{M}^{-2/7} \, B^{4/7}$ の不定性により質量に7%の系統誤差

推定質量: $M_{WD} = 0.87 \pm 0.08 M_{Sun}$

半径: $R_{WD} = 6600 \pm 600 \text{ km}$

- 可視光観測の下限値とコンシステント $(M_{WD} > 0.78 M_{sun}$: Reinsch 1993 など)

- 過去のX線観測はRinを無視したため質量を過小評価していたことを確認 $(M_{WD} = 0.59 \pm 0.05 M_{sun}$: Suleimanov+2005)

(系統誤差+統計誤差)

(質量-半径関係を援用)

まとめ

- 矮新星 GK Persei を2015年3月のoutburstと9月のquiescenceに NuSTARで観測した。
- outburst の 3-50 keV フラックスはquiescenceに比べて 23倍の大きさであった。
- 質量降着率の増加による降着円盤内縁の移動を反映し、 outburstでの衝撃波温度はquiescenceの約半分であった。
- 内縁半径の比 $R_q/R_b = 3.9 \pm 0.5$ を用いた新たな質量推定手法から $M_{WD} = 0.87 \pm 0.08$ M_{sun} と求めた。
- 推定質量は可視光観測による下限値とコンシステント。 内縁半径を加味することで光度変動が起きる系において X線観測でより正確な白色矮星質量の推定が可能となった。